安徽智能乳化液处理

时间:2022年01月23日 来源:

    本发明涉及废液处理领域,且特别涉及废乳化液处理方法及处理系统。背景技术:在日常生产、制造、加工等过程中,常使用冷却润滑液对金属、机械设置及零部件表面进行润滑及冷却,在使用过程中,冷却润滑液发生不同程度的氧化、酸败,性能降低,**终失去冷却及润滑的功能,成为废乳化液。废乳化液中含有皂液、乳化油、烃/水混合物、乳化液(膏)、切削剂、冷却剂、润滑剂、拔丝剂、金属屑等有害物质,其COD每升含量高达几万甚至几十万毫克,石油类含量也很高,还含有铅、镍、镉等重金属物质。若不能对其进行妥善处理,必将给环境带来严重的危害。同时,乳化液废水具有高度分散稳定性、化学成分复杂、污染物浓度高且不易降解、处理难度大灯特点,尤其是机械加工过程产生的高浓度、乳化严重的乳化液含油废水仍没有较好的处理方法。用现有的处理方法对废乳化液处理后,其中仍然含有污染物,甚至会排出油泥,且用现有的技术处理废乳化液之后外排水样中的依旧具有较高的COD值。技术实现要素:本发明的目的在于提供一种废乳化液处理方法,此废乳化液处理方法能够快速的净化废乳化液,并且该方法简单、便于操作,能够相应的降低劳动量;用该方法处理废乳化液没有油泥排放。破乳剂在与乳化液废水发生反应中破坏了水油平衡,分解了双电层结构使油水分离。安徽智能乳化液处理

    国内对共凝聚气浮处理乳化液废水的研究也取得较好成果。曹福等采用聚合氯化铝铁(PAFC)对乳化液废水进行共凝聚气浮处理,当PAFC为1g/L时,浊度去除率达98%以上。许芝等采用共凝聚气浮破乳吸附法处理乳化液废水,在投加PAC、PAM的基础上,将具有一定吸附能力的污水处理厂剩余污泥投加到乳化液废水中,发现污泥投加量为15g/L时,对COD具有比较好处理效果,废水COD可由处理前的5000~20800mg/L降至处理后的75mg/L,处理效果达到国家污水综合排放一级标准。电凝聚法:电凝聚法以可溶性金属作电极,在电场作用下金属失去电子被氧化,生成氢氧化物胶体,利用吸附和凝聚作用及电解过程中发生的氧化还原反应实现对油污的去除。由于该方法能极大减少混凝药剂的使用量且处理效果好,极具应用前景。通常电极材料不同,电凝聚机理也有所不同。以金属为阳极、惰性材料为阴极时,电解过程会产生金属胶体,电极反应的作用表现在还原脱色、电化学作用、混凝作用、吸附作用等,其研究材料以铁屑和焦炭为主。陈依兰等利用转动式电凝聚破乳技术处理金属加工乳化液,对油、COD的去除率为、,且可使原水B/C从提高到。以金属作阴、阳电极时,通常会加入NaCl。专业乳化液处理服务保障这些COD形成的乳化状和水分子相结合,乳化液废水主要处理就是破乳将油水分离。

    反应时间10min,气浮停留时间86min,总停留时间不少于96min。破乳气浮后的清液转入综合反应槽,浮油装桶后运至焚烧车间进行高温焚烧。(2)综合反应:综合反应槽每批进料量10m3,进料结束后加入5%聚铁溶液,每批废液投加~,边加边搅拌,搅拌时间20min;**后加入2%ePAM溶液,每批废液投加―,边加边搅拌,搅拌时间5―10min,同时控制pH值稳定在7―8,若pH不达标,加5%石灰乳进行调节。:物化车间采用PLC程序进行自动控制,主要设备及参数见表1。3.质量控制水污染乳化液经破乳一气乳、综合反应、浓缩沉降、砂滤后检测COD,若超出污水进水水质标准,则需与生活污水混合达标后再进入污水车间进行深度处理,达到城市杂用水回用标准的收集至污水车间回用水池回用污泥滤饼浸出毒性检测若未达到填埋人场限值,则需稳定似固定化车间暂存待处置,达到填埋场入场限值的则直接送至安全填埋场直接填埋。:乳化液集中处理,对每批样品原样、稀释后、破乳一气乳后、与生活污水混合以及超滤一反渗透出水进行COD检测,统计结果见表3。水污染从连续处置的检测结果来看,10批有2批未达到COD≤15mg/L的排放要求,排除检测误差,不达标可能与加药量和反应时问也有关系。进行返工处理。

    而且混凝出水具有较高的生化性。林永增等将以酸洗废液为原料制备的聚合氯化铝(PAC)应用于二次冷轧乳化废液的处理,COD去除率可达到95%以上,达到以废治废的目的。此外,有机混凝剂在乳化液废水处理中也有一定应用。李正要等选用有机破乳剂SYS和聚合氯化铝联合破乳对某钢铁公司油质量浓度6200mg/L、COD为34000mg/L的冷轧乳化液废水进行处理,二级破乳后油去除率达,COD去除率为,取得十分理想的效果。共凝聚气浮法:共凝聚气浮法是在化学混凝的基础上,与气浮工艺相结合产生的一种方法。由于化学混凝后生成的大粒径油滴和絮粒状物质可与气浮机产生的微气泡碰撞黏附,形成更大粒径的带气絮体,因此其去除效果较混凝沉淀法更***,对pH、水温、污染物质负荷适应性更强,投药量更少、反应时间更短。目前对共凝聚气浮处理乳化液废水的研究国外进行得较详细。。研究结果表明,该方法的主要影响因素包括絮凝剂投加量、初始pH、化学添加剂(如破乳剂)浓度、浮选捕集剂浓度及循环比。在实验比较好条件下处理初始油质量浓度500mg/L的模拟乳化液废水,95%的乳化油得到分离。,联合使用溶气气浮法后出水COD较原工艺减少29%,浊度减少71%。乳化液废水处理破乳方法有化学破乳、药剂电解、活性炭吸附或超滤(或反渗透)、酸化法。

乳化液的形成乳化液中添加了大量表面活性剂,降低了体系的表面自由能,且表面活性剂分子在油-水界面定向吸附并形成界面膜,阻止了油滴间的相互碰撞变大,使油滴能长期稳定地存在于水中。因此,处理乳化液废水时必须破坏其稳定性,设法消除或减弱表面活性剂稳定乳化液的能力,以实现油水分离。乳化液废水特点乳化液废水作为一种难处理的工业废水,化学稳定性及污染负荷极高。相关资料显示,乳化液废水中油质量浓度高达15000~20000mg/L,COD达18000~35000mg/L,BOD达5000~10000mg/L。为改善乳化液的性能,还加入大量添加剂,如油性添加剂、极压添加剂、防锈添加剂、防霉添加剂、抗泡沫添加剂等,使得乳化液成分极为复杂,处理难度加大。预乳化过程中体系温度一般在10℃以上,预乳化液相对更加稳定,但所需乳化时间较长。江西产品乳化液处理推荐咨询

乳化液中经常遇到的微生物有细菌、霉菌和藻类三类,这三类微生物对乳化㳖的稳定性有不利影响。安徽智能乳化液处理

    将浓油存储池800中下部的油水送入废乳化液处理池100中,送入该废乳化液处理池100的油水的总体积为16方(立方米)。将25k**碱、50kg乳化液分离剂兑水1000kg稀释后,送入废乳化液处理池100的油水中,开启风机200,“破乳”2h,达到油水分离。在完成“破乳”的废乳化液处理池100中加入5kg的PAM,静置4h,达到油类凝结,水质清澈。实施例2将废乳化液收集于浓油存储池800中,静置,待浮油漂起。将浓油存储池800中下部的油水送入废乳化液处理池100中,送入该废乳化液处理池100的油水的总体积为15方(立方米)。将30k**碱、40kg乳化液分离剂兑水1000kg稀释后,送入废乳化液处理池100的油水中,开启风机200,“破乳”,达到油水分离。在完成“破乳”的废乳化液处理池100中加入5kg的PAM,静置,达到油类凝结,水质清澈。实施例3将废乳化液收集于浓油存储池800中,静置,待浮油漂起。将浓油存储池800中下部的油水送入废乳化液处理池100中,送入该废乳化液处理池100的油水的总体积为(立方米)。将20k**碱、60kg乳化液分离剂兑水1000kg稀释后,送入废乳化液处理池100的油水中,开启风机200,“破乳”,达到油水分离。在完成“破乳”的废乳化液处理池100中加入5kg的聚合氯化铝,静置。安徽智能乳化液处理

久沛(上海)环保科技有限公司,主营:乳化液、切削液的处理,广泛应用于汽车及零部件、航空航天、精密制造等;已服务过中国航空工业中国商飞、长安汽车、佳通、林肯、中联重科、贝卡尔特、陕西有色、新钢集团等世界**企业和行业內**企业,客户遍及全国和东南亚地区。


上海久沛以“乳化液废水一资源化服务商”为使命,依托国际技术成立的高科技企业。专门从事乳化液、切削液和含油废水的工艺研发、设备制造与集成、技术咨询、工程管理和服务的专业化公司,为客户提供技术稳定、先进、性价比高的一站式解决方案。


上海久沛注重研发与自主抟术创新,在过滤、催化氧化工艺、装置及系统等方面获得17项发明和实用新型专利;先后承担了12项科技计划项目。


上海久沛倡导具有创业和分享精神的企业文化,并以“立品,科技**,满足您所需”为经营理念,致力于成为相当有竟争力且令人尊敬的环保企业,一个能激发创造力、充满激情和梦想的创业平台。

信息来源于互联网 本站不为信息真实性负责