广东数据库建设数据科学服务

时间:2021年09月25日 来源:

    GSVA(基因集变异分析,反映了样本和感兴趣的通路之间的联系):GSVA全名Genesetvariationanalysis(基因集变异分析),是一种非参数,无监督的算法。与GSEA不同,GSVA不需要预先对样本进行分组,可以计算每个样本中特定基因集的富集分数。换而言之,GSVA转化了基因表达数据,从单个基因作为特征的表达矩阵,转化为特定基因集作为特征的表达矩阵。GSVA对基因富集结果进行了量化,可以更方便地进行后续统计分析。如果用limma包做差异表达分析可以寻找样本间差异表达的基因,同样地,使用limma包对GSVA的结果(依然是一个矩阵)做同样的分析,则可以寻找样本间有***差异的基因集。这些“差异表达”的基因集,相对于基因而言,更加具有生物学意义,更具有可解释性,可以进一步用于**subtype的分型等等与生物学意义结合密切的探究。 与复旦大学问附属医院合作,开发人血液外泌体中RNA的数据库。广东数据库建设数据科学服务

    cox风险比例回归模型:产品详情产品评论(0)比例风险回归模型,又称Cox回归模型,是由英国统计学家。模型可以用来描述了不随时间变化的多个特征对于在某一时刻死亡率的影响。它是生存分析中的一个重要的模型。应用场景cox比例风险回归模型,由英国统计学家主要用于**和其他慢性疾病的预后分析,也可用于队列研究的病因探索单因素cox分析主要探索单个基因的**预后影响cox分析可用于转录组,甲基化,miRNA,LncRNA,可变剪切等等基本原理:在这里,是一个与时间有关的基准危险率,其选择具有充分的灵活度,一种可能的选择是采用概率论中的Weibull分布。是模型的参数。由于只要给定数据,就能够通过极大似然估计求出模型的参数,而的选择具有很大的灵活性,所以我们称之为一个半参数模型。对公式进行变形,得到:通过这个公式,我们可以发现,模型中各危险因素对危险率的影响不随时间改变,且与时间无关,同时,对数危险率与各个危险因素呈线性相关。这就是Cox回归中的两个基本假设。参数的极大似然估计:术语解读:1.输入变量,由m个影响因素组成:2.生存函数,输入为X时,在t时刻仍然存活的概率:3.死亡函数,输入为X时,在t时刻已经死亡的概率:4死亡密度函数,输入为X时。 广东生物/药物信息学分析数据科学口碑推荐OmicCircos图可以对感兴趣的多个基因,展示其染色体的位置、拷贝数变异等多个特征。

    GSEA基本原理从方法上来讲,GSEA主要分为基因集进行排序、计算富集分数(EnrichmentScore,ES)、估计富集分数的***性水平并进行多重假设检验三个步骤。**步对输入的所有基因集L进行排序,通常来说初始输入的基因数据为表达矩阵,排序的过程相当于特定两组中(case-control、upper-lower等等)基因差异表达分析的过程。根据所有基因在两组样本的差异度量不同(共有六种差异度量,默认是signal2noise,GSEA官网有提供公式,也可以选择较为普遍的foldchange),对基因进行排序,并且Z-score标准化。第二步是GSEA的**步骤,通过分析预先定义基因集S在**步获得的基因序列上的分布计算富集指数EnrichmentScore,并绘制分布趋势图Enrichmentplot。每个基因在基因集S的EnrichmentScore取决于这个基因是否属于基因集S及其差异度量(如foldchange)。差异度量越大基因的EnrichmentScore权重越大,如果基因在基因集S中则EnrichmentScore取正,反则取负。将基因集L在基因集S里的所有基因的EnrichmentScore一个个加起来,就是Enrichmentplot上的EnrichmentScore趋势,直到EnrichmentScore达到**值,就是基因集S**终的EnrichmentScore。第三步是为了检验第二部获得结果的统计学意义。

ssGSEA(single sample GSEA)主要针对单样本无法做GSEA而提出的一种实现方法,原理上与GSEA是类似的。ssGSEA根据表达谱文件计算每个基因的rank值,再进行后续的统计分析。通过这个方法,我们可以得到每个样本的免疫细胞或者免疫功能,免疫通路的活性,然后根据免疫活性进行分组。

ssGSEA量化免疫细胞浸润**的一个优点就是自己可以定制量化免疫浸润细胞种类。目前公认并且用的**多的免疫细胞marker就是2013年发表在Immunity上的SpatiotemporalDynamicsof IntratumoralImmuneCellsReveal the Immune Landscape in Human Cancer 所提供的免疫细胞marker genes(Table S1),能提取到24种免疫细胞信息。 乳腺类疾病预后相关信性基因突变研究数据包。

    术语解释:Cox回归:又称比例风险回归模型(proportionalhazardsmodel,简称Cox模型),是由英国统计学家。该模型以生存结局和生存时间为应变量,可同时分析多种因素对于生存期长短的影响。Cox模型能分析带有截尾生存时间的资料,且不要求估计资料的生存分布类型,因此在医学界被***使用。Logistic回归:又称逻辑回归模型,属于广义线性模型。逻辑回归是一种用于解决二分类问题的分析方法,用于估计某种事物的可能性。相较于传统线性模型,逻辑回归模型以概率形式输出结果,可控性高且结果可解释性强。数据要求:样本临床信息或生物学特征(基因突变、基因表达等)样本的随访数据(总生存期,生存状态)或样本的分组情况下游分析:1.补充相关因素的已有相关研究2.解释相关因素对研究课题的意义。 目前能够对接超过50家实验室。广东生物/药物信息学分析数据科学共同合作

蛋白组代谢组个性化分析。广东数据库建设数据科学服务

    RNAseqChIP根据RNA-seq表达谱分析得到的结果,绘制对应基因启动子区的ChIP-seq信号,观察转录因子对基因的调控影响。一般可应用场景:测了RNA-seq和ChIP-seq,结合转录因子结合情况分析基因表达;只测了RNA-seq,补充相关ChIP-seq公共数据。基本原理:染色质免疫共沉淀技术(ChromatinImmunoprecipitation,ChIP)也称结合位点分析法,是一种研究蛋白质与染色质结合情况的方法。将ChIP与第二代测序技术相结合的ChIP-Seq,能够高效地在全基因组范围内检测与组蛋白、转录因子等互作的DNA区段。转录组测序RNA-seq,获取的转录组基因表达情况,结合ChIP-seq数据,可以从更宏观的角度分析转录因子调控的对基因表达的影响。数据要求:基因列表,ChIP-seq数据。 广东数据库建设数据科学服务

信息来源于互联网 本站不为信息真实性负责