数据科学共同合作
GSEA术语解读Enrichmentscore(ES)ES是GSEA**初的结果,反应关注的基因集S在原始基因数据序列L的顶部或底部富集的程度。ES原理:扫描排序序列,当出现一个基因集S中的基因时,增加ES值,反之减少ES值,一个基因的ES值权重与差异表达度相关。ES是个动态值,**终ES是动态扫描过程中获得的**ES值。如果**终ES为正,表示某一功能基因集S富集在排序序列顶部。ES为负,表示某一基因集S富集在排序序列底部。NES由于ES是根据分析的排序序列中的基因是否在一个基因集S中出现来计算的,但各个基因集S中包含的基因数目不同,且不同功能基因集S与原始数据之间的相关性也不同,因此比较数据中基因在不同基因集S中的富集程度要对ES进行标准化处理,也就是计算NES。NES=某一基因集S的ES/数据集所有随机组合得到的ES平均值,NES是主要的统计量。nominalp-value(普通P值)描述的是针对某一功能基因集S得到的富集得分的统计***性,通常p越小富集性越好。FDR(多重假设检验矫正P值)NES确定后,需要判断其中可能包含的错误阳性发现率。FDR=25%意味着对此NES的判断4次可能错1次。GSEA结果中,高亮显示FDR<25%的富集基因集S。因为从这些功能基因集S中**可能产生有意义的假设。大多数情况下。 circos图通过圆圈和连线展示多个亚组之间的关系,包括且不限于基因、基因片段、亚型。数据科学共同合作
Lasso术语解读λ(Lambda):复杂度调整惩罚值,λ越大对变量较多的线性模型的惩罚力度就越大,**终获得的变量越少。是指在所有的λ值中,得到**小目标参量均值的那一个。而是指在一个方差范围内得到**简单模型的那一个λ值。交叉验证(crossvalidation):交叉验证是在机器学习建立模型和验证模型参数时常用的办法。交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏。在此基础上可以得到多组不同的训练集和测试集,某次训练集中的某样本在下次可能成为测试集中的样本,即所谓“交叉”。数据要求:1、表达谱芯片或测序数据(已经过预处理)或突变数据2、包含生存状态和生存时间的预后数据或者其它临床分组数据。 数据科学共同合作检测服务及数据分析助力取得2020年国自然面上十项、青年基金十八项。
术语解释:互斥性(mutuallyexclusive):一组基因中只有一个在一种**中发生改变,这种现象被称为互斥性。共现性(co-occurrence):不同途径功能的基因突变可能发生在同一**中,这种现象被称为共现性。数据要求:基因突变数据下游分析:对于存在共现性或互斥性的基因对/基因集基因集的功能分析基因集相关的生存分析基于基因集的潜在靶向药物分析文献一:Functionalgenomiclandscapeofacutemyeloidleukaemia急性髓性白血病的功能基因组图(于2018年10月发表在Nature.,影响因子)文献中使用DISCOVER40方法评估531例白血病患者中**常见的复发性突变的共现性或排他性,并用点图展示。文献二:ALPK1hotspotmutationasadriverofhumanspiradenomaandspiradenocarcinoma文献中利用DISCOVER共现性质和互斥性分析工具对ALPK1和CYLD的互斥性进行了评价。
三角坐标统计图是采用数字坐标形式来表现三项要素的数字信息图像。三角形坐标图常用百分数(%)来表示某项要素与整体的结构比例。三条边分别表示三个不同分量,三个顶点可以看作是三个原点。三角图可以展示某特定值在一个整体中不同类型的分布。在生物信息中三角图可以方便地展示3种不同疾病或者3个不同分组之间某个指标的相关性。
数据要求
多个样本的三个变量值,或者多个基因在三个不同分组中的数据值,可以是突变频率数据、基因表达数据、甲基化数据等。 实验室致病类病原微生物数据分析平台。
bubbles(不同分组的基因表达或通路富集展示):Bubbles可以同时展示pvalue和表达量。例如展示motif的pvalue和motif对应的转录因子的表达量,方便快速看出转录因子富集且高表达所在的group,预示着该分组对细胞状态的改变(例如细胞分化、转移、应激)起关键调控作用;例如做基因功能富集分析时,展示富集的通路qvalue和基因数量或geneRatio。
基本原理:
Bubbles的实质是分组数据下基因表达量或通路内基因数量的可视化,同时可以展示pvalue。
数据要求:
表达矩阵,分组 在基因组上同时展示突变位点和motif,为突变影响转录因子结合提供量化和可视化的证据。云南数据库建设数据科学活动
两个实验组的差异基因比较。数据科学共同合作
术语解读
数据降维:
降维就是一种对高维度特征数据预处理方法。降维是将高维度的数据保留下**重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的。在实际的生产和应用中,降维在一定的信息损失范围内,可以为我们节省大量的时间和成本。降维也成为应用非常***的数据预处理方法。
数据要求:
表达谱芯片或测序数据(已经过预处理)
下游分析
得到PCA分析结果之后的分析有:
1.对组成主要成分的基因进行后续分析,探究该情况下关键基因表达情况
2.对组成不同主成分簇的基因进行后续分析,探究该情况下不同基因集的表达情况 数据科学共同合作
上一篇: 重庆数据科学
下一篇: 上海成果发表指导数据科学活动