重庆组学实验数据科学专业服务
GSVA算法接受的输入为基因表达矩阵(经过log2标准化的芯片数据或者RNA-seqcount数数据)以及特定基因集。**步,算法会对表达数据进行核密度估计;第二部,基于**步的结果对样本进行表达水平排序;第三步,对于每一个基因集进行类似K-S检验的秩统计量计算;第四步,获取GSVA富集分数。**终输出为以每个基因集对应每个样本的数据矩阵。无监督算法无监督算法常常被用于数据挖掘,用于在大量无标签数据中发现些什么。它的训练数据是无标签的,训练目标是能对观察值进行分类或区分等。核密度估计核密度估计(kerneldensityestimation)在概率论中用来估计未知的密度函数,属于非参数检验方法之一。数据要求1、特定感兴趣的基因集(如信号通路,GO条目等),列出基因集中基因2、基因表达矩阵,为经过log2标准化的芯片数据或者RNA-seqcount数数据(基因名形式与基因集对应)下游分析1、基因集(如信号通路)的生存分析2、基因集(如信号通路)的差异表达分析3、基因集。 云生物提供数据科学服务。重庆组学实验数据科学专业服务
GeneInteraction基因互作:基因相互作用指miRNA、lncRNA、circRNA或其它RNA介导DNA转录,从而影响mRNA的表达过程。通俗意义上来说,基因互作关系指基于序列预测的靶基因对。miRNA通过与靶mRNA的结合,或促使mRNA降解,或阻碍其翻译,从而***目的基因的表达。竞争性内源RNA网络是靶基因预测的研究深入,简称ceRNA网络。通过进行ceRNA网络的分析,我们能从一个更为宏观的角度来解释转录体如何构建基因表达调控网络,从而进一步挖掘基因在其中的调控机制。基本原理:miRNA主要通过与靶基因的非翻译区(UTR)结合而发挥其作用,对miRNA和mRNA、lncRNA、circRNA结合进行的预测称为靶基因预测。靶基因预测使用软件根据miRNA和靶基因间的结合的规律预测结合基因对。在生物体内,miRNA可以通过与proteincoding特异性结合,影响相关基因的表达,从而参与调控细胞内的各项功能。ceRNA具有miRNA结合位点,能后竞争性地结合miRNA,***miRNA对靶基因的调控。例如lncRNA与miRNA竞争性结合,影响miRNA调控mRNA的过程,**终导致的mRNA表达失调。我们使用基于序列预测的软件对差异分析得到的miRNA与mRNA,lncRNA,circRNA进行靶点预测和ceRNA网络分析。 湖北组学数据处理数据科学在基因组上同时展示突变位点和motif,为突变影响转录因子结合提供量化和可视化的证据。
Lasso术语解读λ(Lambda):复杂度调整惩罚值,λ越大对变量较多的线性模型的惩罚力度就越大,**终获得的变量越少。是指在所有的λ值中,得到**小目标参量均值的那一个。而是指在一个方差范围内得到**简单模型的那一个λ值。交叉验证(crossvalidation):交叉验证是在机器学习建立模型和验证模型参数时常用的办法。交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏。在此基础上可以得到多组不同的训练集和测试集,某次训练集中的某样本在下次可能成为测试集中的样本,即所谓“交叉”。数据要求:1、表达谱芯片或测序数据(已经过预处理)或突变数据2、包含生存状态和生存时间的预后数据或者其它临床分组数据。
RNAseqChIP根据RNA-seq表达谱分析得到的结果,绘制对应基因启动子区的ChIP-seq信号,观察转录因子对基因的调控影响。一般可应用场景:测了RNA-seq和ChIP-seq,结合转录因子结合情况分析基因表达;只测了RNA-seq,补充相关ChIP-seq公共数据。基本原理:染色质免疫共沉淀技术(ChromatinImmunoprecipitation,ChIP)也称结合位点分析法,是一种研究蛋白质与染色质结合情况的方法。将ChIP与第二代测序技术相结合的ChIP-Seq,能够高效地在全基因组范围内检测与组蛋白、转录因子等互作的DNA区段。转录组测序RNA-seq,获取的转录组基因表达情况,结合ChIP-seq数据,可以从更宏观的角度分析转录因子调控的对基因表达的影响。数据要求:基因列表,ChIP-seq数据。 数据库建设、公共数据库挖掘。
STEM基因表达趋势分析基因调控网络是一个连续且复杂的动态系统。当生物体按照一定顺序发生变化或者受到外界环境刺激(如受到不同浓度的化学药物诱导)时,基因表达变化也会呈现趋势特征。趋势分析就是发现基因表达的趋势特征,将相同变化特征的基因集中在一种变化趋势中,从而找到实验变化过程中相当有有代表性的基因群。STEM(ShortTime-seriesExpressionMiner),中文名短时间序列表达挖掘器。该软件主要用于分析短时间实验数据,也可用于多组小样本数据。推荐3至8组数据。一般可应用的研究方向有:多个时间点的时间序列数据,例如多个发育时期、处理后多个时间点取样。基本原理STEM采用了一种新的聚类算法来分析时间序列基因表达趋势。聚类算法首先选择一组不同的、有代表性的时间表达模式(temporalexpressionprofiles)作为模型(modelprofiles)。模型是**于数据选择的,并从理论上保证了所选择的模型剖面具有代表性。然后,根据每个标准化过后的基因表达模式,分配给模型中相关系数比较高的时间表达模式。由于模型的选择是**于数据的,因此该算法可以通过排列测试,确定哪些时间表达模式在统计意义上***富集基因。对每一个基因都分配时间表达模式完成后。 早期肝疾病的预后基因panel研究。重庆生物/药物信息学分析数据科学
基因富集分析是在一组基因中找到具有一定基因功能特征和生物过程的基因集的分析方法。重庆组学实验数据科学专业服务
bubbles(不同分组的基因表达或通路富集展示):Bubbles可以同时展示pvalue和表达量。例如展示motif的pvalue和motif对应的转录因子的表达量,方便快速看出转录因子富集且高表达所在的group,预示着该分组对细胞状态的改变(例如细胞分化、转移、应激)起关键调控作用;例如做基因功能富集分析时,展示富集的通路qvalue和基因数量或geneRatio。
基本原理:
Bubbles的实质是分组数据下基因表达量或通路内基因数量的可视化,同时可以展示pvalue。
数据要求:
表达矩阵,分组 重庆组学实验数据科学专业服务
下一篇: 天津成果发表指导数据科学售后分析